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Abstract. Detection of community structure in graphs remains up to
this date a computationally challenging problem despite the efforts of
many researchers from various scientific fields in the past few years.
The modularity value of a set of vertex clusters in a graph is a widely
used quality measure for community structure, and the relating problem
of finding a partition of the vertices into clusters such that the corre-
sponding modularity is maximized is an NP-Hard problem. A Greedy
Randomized Adaptive Search Procedure (GRASP) with path relinking
is presented in this paper, for modularity maximization in undirected
graphs. A new class of {0, 1} matrices is introduced which characterizes
the family of clusterings in a graph, and a distance function is given
which enables us to define an l-neighborhood local search which gen-
eralizes most of the related local search methods that have appeared in
the literature. Computational experiments comparing the proposed algo-
rithm with other heuristics from the literature in a set of some well known
benchmark instances, indicate that our implementation of GRASP with
path relinking consistently produces better quality solutions.

Keywords: Complex systems, community structure, graph clustering,
modularity, GRASP, path relinking.

1 Introduction

Community detection in graphs is an interdisciplinary subject with a vast spec-
trum of applications, that has attracted the interest of many researchers in var-
ious fields in the past few years (for an extensive survey on the topic see [13]).
Although there is no rigorous mathematical definition of the concept of commu-
nity structure, the modularity value of a given vertex partition suggested in [27],

⋆ This work is a modified and improved version of [23] that is currently in submission
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is currently the most popular function used to quantify community structure in
a graph.

There are few exact approaches in the literature for modularity maximiza-
tion, and they can solve problems with a limited number of vertices [39, 7, 3].
On the contrary there is a plethora of heuristic algorithms which have appeared
mainly within the physics community. A large class of heuristic algorithms is
that of greedy methods, where initially every vertex of the graph is considered
to be a cluster, and at every step of the algorithm a merge between two clus-
ters is performed in a greedy fashion. Many variations of this theme have been
suggested in order to decrease the computational effort, or improve the solution
quality [8, 35, 40, 9, 36, 5]. Greedy methods can be characterized as being capa-
ble of handling large graphs in the order of 106 vertices, but with worse solution
quality with respect to other methods. Other heuristic algorithms for commu-
nity detection by modularity maximization are simulated annealing methods [16,
31, 22], extremal optimization [10], spectral clustering methods [26, 38], hybrid
methods [29], integer rounding heuristics [1], genetic algorithms [20] and tabu
search [4].

In this paper a heuristic procedure for finding a clustering of maximum mod-
ularity in a graph is presented, which can be characterized as a randomized
multistart local search algorithm. A new class of {0, 1} matrices is introduced
which is in one-to-one correspondence with the clusterings in a graph, and it
enables us to define a distance function that forms a metric space together with
the family of clusterings. The paper is organized as follows. Section 2 contains all
the preliminary information needed. Section 3 is where the GRASP with path
relinking algorithm is developed which is composed of three main phases, a con-
struction phase, a local search phase and a path relinking phase. In Section 3.1
we describe how to construct a clustering starting from the empty set, by fol-
lowing a randomized greedy strategy. Local search is described in Section 3.2,
where initially we establish a notion of distance between two clusterings by pro-
viding an algebraic characterization of the clusterings, while in Section 3.3 we
present the memory mechanism incorporated to our algorithm so as to use pre-
vious information to improve the current solution. Computational experiments
that compare our algorithm with other algorithms from the literature in bench-
mark graphs are given in Section 4. Conclusions and further research are given
in Section 5.

2 Modularity

Let G = (V,E) be a graph where V (G) := {1, 2, . . . , n} is its set of nodes and
E(G) its set of edges, while |E(G)| = m. By a clustering C = {C1, C2, . . . , Ck}
we mean a partition of V (G), and we will refer to the Ci ∈ C as the clusters.
Modularity is a quality function introduced by Newman and Girvan in [27] which
quantifies the community structure by providing a value for every clustering of
a given graph. The main idea is to employ a random graph on the same vertex
set that does not have any community structure, and compare the edge density



Title Suppressed Due to Excessive Length 3

of the clusters in the original graph with the edge density of the clusters in the
random graph. The greater the difference between the two edge densities, the
more community structure the given clustering describes. The modularity of a
given clustering C for some graph G, is defined as

Q(C) :=
1

2m

∑

C∈C

∑

i,j∈C

(

aij −
dG(i)dG(j)

2m

)

(1)

where aij is the number of edges between nodes i and j, and dG(i) is the degree
if node i. In the case of a weighted graph the definition of modularity in (1)
can be easily generalized as it is indicated by [28]. Given a weight function
w : E(G) → R on the edges of a graph, we can define the strength of a vertex
i ∈ V (G) as

sG(i) :=
∑

j∈V (G)

w(i, j). (2)

We can then write for the modularity of a clustering C for some weighted graph
G

Qw(C) :=
1

2
∑

e∈E(G) w(e)

∑

C∈C

∑

i,j∈C

(

w(i, j)−
sG(i)sG(j)

2
∑

e∈E(G) w(e)

)

. (3)

To ease the notation we will employ the so called modularity matrix, which is an
n× n matrix M = (mij) with entries defined as

mij :=

{

aij −
d(i)d(j)

2m if G is unweighted,

w(i, j)− sG(i)sG(j)
2
∑

e∈E(G) w(e) if G is weighted,
(4)

for i, j = 1, . . . , n.

3 GRASP with Path Relinking for Community Detection

Greedy Randomized Adaptive Search Procedure (GRASP) is a randomized mul-
tistart local search algorithm which has been applied to a plethora of combina-
torial optimization algorithms with favorable computational results [30]. In each
iteration a solution is constructed starting from an empty solution in a greedy
randomized fashion and a local search is applied to some specified neighborhood
of the constructed solution. This solution is then used to examine the space
formed with previously found solutions for further improvement.

The proposed algorithm GraspPR for community detection problem in net-
works by modularity maximization, is shown in pseudocode in Figure 1. The
inputs to the algorithm is the graph under consideration, the parameter iter

which is the maximum number of iterations, a random number seed seed, the
size of the elite set of solutions elitesize, the greedy parameter α which indi-
cates the degree of greediness in the construction phase of the algorithm, and
the neighborhood size l for the local search. In lines 1 and 2 we initialize the
best clustering C∗ and the set of solutions S upon which path relinking will take
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Algorithm: GraspPR

Input : graph G(V,E), maximum iterations iter, random number seed
seed, size of elite set elitesize, greedy parameter α ∈ (0, 1), neigh-
borhood size l

Output: clustering C∗ = {C1, C2, . . . , Ck} with maximum Q(C∗)

1. C∗ := ∅
2. S := ∅
3. for i = 1, . . . , iter do

4. Cc := ConstructClustering(G(V,E), seed,α)
5. Cl := LocalSearch(G(V,E), Cc, l)
6. Cp := PathRelinking(G(V,E),S, Cl, elitesize)
7. UpdateElite(S, Cp)
8. if Q(Cp) > Q(C∗) then
9. C∗ := Cp

10. end if

11. end for

12. return C∗

Fig. 1. GRASP with path relinking for maximum modularity clustering

place. In the main iterations of the algorithm (lines 3 through 11) a solution Cc

is constructed from the empty set in line 4, and it is passed to local search in
line 5 where a l-neighborhood local maximum solution Cl will be computed. The
resulting solution Cl is then passed to the path relinking procedure in line 6,
where a search for a clustering with higher modularity will be performed in the
space of solutions spanned by the difference of Cl and every solution from the
elite set S with sufficient distance from Cl. In line 7 the elite set used in the path
relinking procedure is updated, while the best solution C∗ found throughout the
iterations is stored in lines 8 through 10. All three procedures in lines 4, 5 and
6 as well as the updating of the elite set of solutions, will be discussed in detail
in the sections that follow.

3.1 Construction of a Clustering

The first task in every iteration of the GraspPR algorithm is to construct a
clustering starting from the empty set, in a greedy randomized fashion. In the
discussion that will follow let C = {C1, . . . , C|C|} ⊆ 2|V (G)| denote a partial
clustering, that is a clustering of the vertices of G that does not include the
whole of V (G). Consider the set of vertices not in C defined as

L(C) := {i ∈ V (G) : i /∈ C, ∀C ∈ C}.

Let us now define a gain function gC : V (G) → R on the elements of L(C) for
some partial clustering C, which will indicate the increase in the modularity
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value Q(C) upon the insertion of some vertex from L(C) to the partial clustering
C. Note that some i ∈ L(C) can be augmented to C either as a separate cluster
{i} or as a member of an existing cluster C ∈ C. Thereby the gain function for
some i ∈ L(C) is defined as

gC(i) := max











mii, if {i} is a cluster in C,

maxk

(

∑

j∈Ck
2mij

)

+mii, if i to be a included in some

existing cluster in C,

(5)

where the mij are the entries of the modularity matrix defined in (4). Using
the gain function gC we can order the set L(C) such that its elements appear in
descending order, that is

L(C) := (i(1), i(2), . . . , i(|C|)), (6)

where
gC(i(1)) ≥ gC(i(2)) ≥ · · · ≥ gC(i(|C|)).

Algorithm: ConstructClustering

Input : graph G(V,E), random seed seed, α ∈ (0, 1)
Output: clustering Cc = {C1, C2, . . . , C|Cc|}

1. Cc := ∅
2. L(Cc) := V (G)
3. while L(Cc) 6= ∅ do

4. Compute L(Cc)
5. Choose i randomly among the first α elements of L(Cc)
6. Cc := C ∪ {i}
7. L(Cc) := L(Cc)− {i}
8. end while

9. return Cc

Fig. 2. Constructing a clustering

We can now state the algorithm ConstructClustering which is shown in
Figure 2. In line 1 we initialize the partial clustering Cc to the empty set. At
every iteration in lines 2-8, the ordered set of candidate vertices is computed in
line 4 using the gain function as defined in (5), and from this set we choose some
vertex i to be added to our clustering, among the best α×|Cc| vertices. Note here
that the range of α ∈ (0, 1) defines the degree of greediness or randomness our
constructed solution will have. That is for values of α close to 0 the algorithm
behaves greedily while for values close to 1 it behaves randomly. In line 7 the
selected vertex is added to the partial clustering, in a way so defined by its gain
function.
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3.2 Local Search

By local search for a optimization problem, we refer to the process upon which an
exhaustive search is performed in the neighborhood of a given solution in order
to derive a local optima. In order to specify the structure of the neighborhood of
a solution, the notion of distance between any two solutions has to be defined.
The following definition of a class of {0, 1} matrices will provide us with the
means for an algebraic treatment of clusterings in a graph.

Definition 1. A matrix S = (sij) ∈ {0, 1}k×n is called a basic clustering

matrix if

i) it has no zero rows

ii)
∑k

i=1 sij = 1 for all j = 1, . . . , n
iii) if sij is the first nonzero element of row i then slt = 0 for l = i + 1, . . . , n

and t = 1, . . . , j.

If only conditions i) and ii) are satisfied then the matrix is called clustering

matrix.

It is easy to show that given some graph with n vertices, there is a one-to-one
correspondence between the set of clusterings of size k and the {0, 1}k×n basic
clustering matrices. For any clustering C we will denote with SC its corresponding
basic clustering matrix, and for any basic clustering matrix S we will denote with
CS its corresponding clustering. For a basic clustering matrix S we will denote
withM(S) the set of k! clustering matrices which can be generated by permuting
its rows. Given any two clustering matrices S ∈ {0, 1}k1×n and T ∈ {0, 1}k2×n

we define their difference set as the set

∆(S, T ) := {j : Sij 6= Tij , i = 1, . . . ,min{k1, k2}, j = 1, . . . , n}, (7)

which is the set of columns upon which these matrices differ. The distance be-
tween any two basic clustering matrices S1 ∈ {0, 1}k1×n and S2 ∈ {0, 1}k2×n is
thus defined as

d(S1, S2) := min{|∆(S, T )| : S ∈ M(S1), T ∈ M(S2)}. (8)

So d(S1, S2) is the minimum number of moves of elements within the clusters in
the clusterings associated with the basic clustering matrices S1 and S2, needed
to transform one clustering to another. The difference set of elements which
defines the distance between S1 and S2 will be called the minimum difference
set, and will be denoted by ∆∗(S1, S2). It is easy to show that the set of all basic
clustering matrices for a given graph along with the distance function as defined
in (8) forms a metric space.

Observe that direct computation of the distance as defined in (8) requires
(min{k1, k2})! steps, since it suffices to permute the rows of the smaller basic
clustering matrix in order to find the difference set of minimum cardinality. The
constructive proof of the following theorem provides a polynomial time algorithm
to compute the distance function defined (8).
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Theorem 1. Given two basic clustering matrices S1 ∈ {0, 1}k1×n and S2 ∈
{0, 1}k2×n their distance d(S1, S2) can be computed in O(k3) time, where k :=
min{k1, k2}.

Proof. The computation of the distance will be reduced to a linear assignment
problem. Given the two basic clustering matrices S1 = (s1ij) and S2 = (s2ij),
construct a k × k cost matrix C = (cij) as follows

cij :=

n
∑

l=1

|s1il − s2jl|, (9)

for i, j = 1, . . . , k. Consider now the following combinatorial optimization prob-
lem

min
p∈Pk

k
∑

i=1

cp(i)i (10)

where Pk is the set of all permutations of the set {1, . . . , k}. The optimum
permutation to (10) corresponds to the permutation of the rows of the smaller
basic clustering matrix, needed to produce the clustering matrix that defines
the distance between S1 and S2. The problem in (10) is the so called linear
assignment problem which can be solved efficiently in O(k3) computational time
(see [19]). ⊓⊔

The l-neighborhood of a clustering C can now be defined as

Nl(C) := {C′ ⊆ 2|V (G)| : d(SC , SC′) ≤ l} (11)

where SC , SC′ are the basic clustering matrices of C and C′ respectively. So N1(C)
contains all those clusterings which can be generated by C by moving one element
from one cluster into another, including the case where this element can be
removed from its cluster and be a cluster of its own. The set N2(C) contains
N1(C), as well as all those clusterings generated by C by moving two elements
from their clusters to other clusters etc.

We are now ready to describe the local search procedure in which start-
ing from a clustering Cc as given by the algorithm ConstructClustering in
Figure 2, we derive a clustering Cl which satisfies

Cl = argmax{Q(C) : C ∈ Nl(C
l)}.

The local search algorithm LocalSearch is shown in Figure 3. In the main
iterations of the algorithm in lines 2-11, we repeatedly derive the local optimum
solution Cl in lines 5-10 in the l-neighborhood of our current solution C∗. When
the current solution is the local optimum solution we terminate the procedure.
In this work we employed the 1-neighborhood for all local searchers, since the
size of the neighborhood grows exponentially with l and for values of l ≥ 2 it is
computationally intensive to perform an exhaustive search.
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Algorithm: LocalSearch

Input : graph G(V,E), clustering Cc, neighborhood size l

Output: clustering Cl = {C1, C2, . . . , C|Cl|}

1. Cl := Cc

2. repeat

3. C∗ := Cl

4. N := Nl(C
∗)

5. for all C ∈ N do

6. if Q(C) > Q(Cl) then
7. Cl := C
8. end if

9. N := N \ {C}
10. end for

11. until Cl 6= C∗

12. return Cl

Fig. 3. Local search

3.3 Path Relinking

Path relinking has been incorporated in GRASP for the improvement of the so-
lution quality as well as for faster convergence to various combinatorial problems
(see [11, 2, 33, 12, 24]). A thorough survey of how path relinking can be applied
to GRASP is given in [32]. In path relinking we explore the space of solutions
spanned by two good quality solutions, in hope of finding a better solution. Al-
though it can be viewed as another type of local search where the region to
be searched is defined by two solutions instead of one, its main function is to
provide a memory mechanism to the algorithm since one of the solutions will be
some good quality solution obtained from a previous iteration.

Given two clustering matrices SC1
and SC2

from the respective clustering C1

and C2 we define a second difference set as the set

∆′(SC1
, SC2

) := {C2
j : min

1≤i≤|C1|
||Si

C1
− Sj

C2
|| > 0, i = 1, . . . , |C2|}. (12)

In describing the path relinking procedure, consider that we have two solu-
tions C1 and C2. The space of clusterings spanned by C1 and C2 is

span(C1, C2) := {C ∈ 2|V (G)| : ∆∗(SC , SC1
) ⊆ ∆∗(SC1

, SC2
)},

as defined by the set of all 2|d(SC1
,SC2

)| subsets of ∆∗(SC1
, SC2

) which can be
ordered by inclusion. Since the size of this space is exponentially large with
respect to d(SC1

, SC2
), instead of generating all the solutions in this space in

search of the one with the maximum modularity, we will trace in a greedy fashion
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Algorithm: PathRelinking

Input : graph G(V,E), clustering Cl, elite solution set S, elitesize
Output: clustering Cp = {C1, C2, . . . , C|Cp|}

1. S̄ := {C ∈ S : d(SC, SCl) ≥ 4}
2. if |S| < elitesize or S̄ = ∅ then

3. return Cl

4. end if

5. for all C ∈ S̄ do

6. S0 := SC

7. S∗ := SC

8. for k = 0, . . . , d(SC, SCl)− 2 do

9. max:=0
10. for all Cl

i ∈ ∆
′

(Sk, SCl) do
11. S :=change(Sk, SCl , C

l
i)

12. if Q(CS) > max then

13. i∗ := i

14. max:= Q(CS)
15. end if

16. end for

17. Sk+1 :=change(Sk, SCl , C
l
i∗)

18. C := LocalSearch(G(V,E), CSk+1)
19. if Q(C) > Q(CS∗) then
20. S∗ := SC

21. end if

22. end for

23. end for

24. return CS∗

Fig. 4. Path relinking
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a path of solutions from C1 to C2, perform a local search in the l-neighborhood
of any solution in the path and keep the best solution found overall.

The path relinking procedure is shown in pseudocode in Figure 4. It will
receive as inputs the graph under examination, a clustering Cl generated by the
local search procedure as described in Section 3.2, the set of elite solutions S,
updated throughout the GraspPR iterations. In line 1 we initialize the set S̄
which contains all solutions from S that have sufficient distance from Cl. Note
that Cl and every C ∈ S are 1-neighborhood local maximum solutions, therefore
if d(Cl, C) ≤ 3 none of the solutions in span(Cl, C) − {Cl, C} will have a higher
modularity value than Q(Cl) or Q(C). In lines 2-4 we will return the solution
Cl unaltered as the result of the PathRelinking procedure, if either the size
of the elite set is less than the parameter elitesize or there are no solutions
of sufficient distance from Cl. This will take place in the initial iterations of the
GraspPR algorithm where the elite set of solutions is constructed. In the loop
defined in lines 5 through 23, a path of solutions from C to Cl will be generated
and searched, for any clustering C ∈ S̄. In lines 6 and 7 we initialize the starting
and best solution, respectively. In each iteration k of the loop in lines 8 through
23 a solution Sk is generated such that

Sk := argmax{Q(CS) : d(S
k−1, S) = |∆

′

(Sk−1, S)|},

until we reach SCl . The local search is performed since we want to ensure that
the solution produced by the path relinking procedure will be a 1-neighborhood
local maximum.

Note that for the two basic clustering matrices S1, S2 from the respective
clusterings C1 and C2 and some clustering C2

j ∈ C2 with j = 1, . . . , |C2|, the

function change(S1, S2, C
2
j ) in line 11 and 17 returns a basic clustering matrix S

such that ∆∗(S, S2) = ∆∗(S1, S2)−C2
j . In the procedure UpdateElite in line 7

of the GraspPR algorithm shown in Figure 1, any solution Cp produced by the
path relinking procedure will be considered for possible insertion in the elite set
of solutions S. This will be done even if no path generation takes place in the case
that the elite set is not of maximum size, or there are no solutions of sufficient
distance from the current solution. If |S| < elitesize then any solution Cp will
be added to the elite set. If |S| = elitesize, then the only criterion used in
deciding whether a solution will be added to the elite set, thereby replacing an
existing solution of the set, is the modularity value. So if

Cmin := argmin{Q(C) : C ∈ S},

then a solution Cp will replace Cmin if Q(Cp) > Q(Cmin).

4 Computational experiments

In this section we will present the computational experiments that we performed
in order to examine the performance of the GraspPR algorithm for modularity
maximization. In what follows, we will present the graphs used in the compu-
tational experiments, the heuristics used for comparison reasons, as well as the
parameter settings of GraspPR.
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4.1 Experimental Results

The set of benchmark graphs used in our experimental study is presented in Ta-
ble 1, where the number of vertices and edges is given. The parameter values for

Table 1. Benchmark graphs used in the computational experiments.

Data set Ref. n m

karate [41] 34 78
dolphins [21] 62 159
lesmis [18] 77 254
polbooks - 105 441
adjnoun [26] 112 425
afootball [14] 115 613
jazz [15] 198 2742
collab [25] 235 415
celegans neural [37] 297 2148
celegans metabolic [10] 453 2025
email [6] 1133 5451

the GraspPR are iter=500, α ∈ [0.1, 0.7] and elitesize=1. Since GraspPR

has a random component, we run the heuristic 10 times and considered the me-
dian result. The heuristic algorithms used for comparison reasons can be found
in the works of [10, 1, 34, 4].

Columns 2 through 5 in Table 2 report for each benchmark graph, the best
known modularity value for the algorithm in the given reference, the number of
clusters in the corresponding solution as well as the required time when available.
Columns 6 through 8 give the same information for the proposed GraspPR

algorithm, while columns 9 and 10 present the currently known upper bounds
as reported in [1] and [3]. The former upper bound corresponds to the linear
relaxation of a integer program whereas the latter corresponds to the optimum
solution obtained by a column generation strategy.

It is worth mentioning that, in most of the cases, the best result achieved by
[1] corresponds to the solution of two different heuristics (LP and VP). For this
reason, in such cases, we reported the runtime of VP heuristic, that presented
a lower average runtime than LP. Moreover, Rotta [34] proposed two different
multi-level strategies (ML), one based on density ML-KL-density, and another
based on random walks ML-KL-rw. We differentiate them by using a * when
referring to a solution obtained by the ML-KL-density strategy. We do not report
any computational times of the algorithms in [34] in Table 2. However, by the
analysis given by the author in his PhD thesis, it is possible to conclude that,
as a multi-level strategies they require less computational time than most meta-
heuristics. Nevertheless both strategies make use of the intensification algorithm
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Table 2. Results of the comparison between algorithms for modularity maximization.

Best known solution GraspPR Upper Bound
Data set source Q(C) |C| time Q(C) |C| time source Q(C)

karate [1, 34] 0.420 4 6 0.420 4 0 [3] 0.420
dolphins [1] 0.529 - 4 0.529 5 0 [3] 0.529
lesmis [1] 0.560 - 4 0.560 6 0 [3] 0.560
polbooks [1, 34] 0.527 5 12 0.527 5 1 [3] 0.527
adjnoun [34] 0.310 - - 0.311 6 1 - -
afootball [1, 34] 0.605 10 23 0.605 10 1 [3] 0.605
jazz [10] 0.445 5 24 0.445 4 0 [1] 0.446
collab [1] 0.803 - 105 0.803 51 18 [1] 0.805
celegans neural [34] 0.503 5 - 0.503 4 2 - -
celegans metabolic [34] 0.451* 9 - 0.452 9 98 - -
email [34] 0.581 9 - 0.582 13 1565 - -

from Kernighan and Lin [17], thereby it is expected that they require higher
computational time than conventional ML algorithms.

According to the results of Table 2, we observe that the proposed hybrid
metaheuristic, GraspPR is competitive with the best algorithms found in lit-
erature for the tested benchmark graphs. Moreover, the best results of the past
heuristics for the benchmark graphs karate, dolphins, lesmis, polbooks and afoot-

ball, according to the corresponding upper bounds, cannot be improved since
they are the optimal solutions. For these graphs, GraspPR also found an op-
timum solution. Concerning the other six benchmark graphs, in three of them
GraspPR achieved the same solution value as past heuristics, while it outper-
formed them in the remaining three. Specifically, for the graph adjnoun, Rotta
[34] found a partition with modularity 0.31078, whereas the solution found by
GraspPR had a modularity of 0.311048. An improvement in the best solution
found by past heuristics was also observed for the graphs celegans metabolic. A
more precise value of the solution found by GraspPR was 0.451687, whereas the
solution found by ML-KL-density that was the best solution among past heuris-
tics, was 0.45090. GraspPR achieved a very good result with the benchmark
graph email. A more precise value of the modularity obtained was 0.581695 that
is better than the best reported heuristic result, by [34], 0.58137.

Considering the other three graphs for which the proposed heuristic found
competitive results, more precise values enable a better analysis of the solutions
found. For the benchmark graph jazz, GraspPR achieved a slightly worse result
than to the best reported. In this case, GraspPR found a partition with modu-
larity 0.44514, whereas the best reported past heuristic result, by [1], was 0.4452.
On the other hand, the solution value found by GraspPR for the graph collab

was exactly the same as the best past heuristic. For the graph celegans neural, the
solution found by GraspPR was 0.503485, better than the best past heuristic,
that achieved the solution value 0.50295.
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According to the presented results, the use of GraspPR is recommend for
small and medium graphs. It has to be noted that this version of the GraspPR

is an improvement over the previous version that appears in [23], that did not
perform as well for large graphs.

5 Conclusions

Computational results in a set of benchmark graphs, indicate that the proposed
algorithm is superior and robust with respect to solution quality, in the sense
that for the majority of the cases it produces better solutions than other heuris-
tics from the literature while it had the least deviation in the cases where it did
not find the best solution. Furthermore, for a set of frequently used benchmark
graphs from the literature, it produced the best solution among all heuristics
tested. The proposed algorithm however required greater computational time.
Further research will be directed towards employing sophisticated data struc-
tures to reduce the computational time of the algorithm, so as to be able to solve
within a few seconds problems involving large scale graphs (i.e. for n ≥ 106).
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